Monday, November 17, 2014

How I am teaching culinary math the second time around.

After teaching culinary math for the first time I've learned a few things, the most important being the primary student learning objective; Complete a recipe costing form. The course does discuss a few topics that are outside of this form, but this one objective contains about 90% of the course material. It might sound a bit funny, it takes teaching a course once to find out the real student learning objective, but as with many things in life "You truly learn something the first time you teach it."

For those of you in education you might be asking "What is a recipe costing form?" With a current average of 5.1% profits, maintaining high efficiency and cost control for restaurants is a necessity. To do that detailed records of how much everything costs must be kept, and the menu prices of dishes need to be firmly based on their costs. Simply put, a recipe cost form is used to determine how much it costs to make a recipe. With the base cost of the recipe, how many servings it will produce, and the target food cost for a restaurant (25-35%) a restaurant manager can get an idea of how much to price a dish. There are other things to consider (target clientele, location, marketing, etc.) but a recipe cost is a good starting point to base prices on.

This might sound simple, but there are a few ideas that need to be addressed. As an example, let's look at yield. If you order a pound of potatoes for $2.00, are you going to serve exactly that pound of potatoes? No, you have to skin, trim, and wash them first. You loose a certain amount of the weight (that you paid for), so you now have 87% of that pound (the yield). That pound of potatoes now costs $2.00/87%, or about $2.30. The terminology used is: as-purchased (AP) cost is $2.00/lb but the edible-portion (EP) is $2.30/lb. If a recipe calls for 3 pounds of prepared potatoes (skinned, trimmed, and cleaned) we simply multiply this amount by the EP cost of $2.30/lb to get $6.90. Do that for each of the ingredients, add them up and you have the final recipe cost. These forms setup these calculations in a consistent manner so they are easily done, can be read by other people, and different recipes can be compared. (There is an exception to using yield when a recipe calls for a number of something, like one whole apple. If you paid for each apple, not by the pound, yield isn't necessary since you didn't 'lose' a part that you paid for.)

All this is to say that these recipe costing forms are the true final assessments of the course, and using a backwards design model, the course should be focused on getting students to complete them. Thus all the assessments are going to target different aspects of these forms. To scaffold these skills I changed the learning activities (handouts) to include two parts:

1. An Exercises portion of various questions that we discuss in-class, with the answers provided at the end. I generally start the day with an example or a discussion of the idea, then do one of the first few questions, and slowly step back my instruction as students attempt more of the questions on their own.
2. A Graded portion that they are to turn in over the next few days. Answers are not provided, but they can work with each other.

To ensure students complete the Exercises portion I have a notebook check during test days where I review their notebook. These notebooks are not my idea, I have to thank Rhonda Hull at Clackamas Community College for the inspiration. She designed the MTH111 College Algebra course that I teach occasionally, and in addition to using a flipped classroom model, uses notebooks to ensure students are completing their work.

I also included a quiz each Wednesday, and a test every second Friday. I like the regularity of these assessments, in the hope that they reduce cognitive load on students, but also allows them to plan on these activities.

I'll make a few future posts about how this class goes, the one idea that is outside of the recipe costing form (kitchen ratios) and potentially about a new culinary math project. If you have any questions for me, about the course, my approach, the activities, or anything else, just post a comment below.

Thank you for reading!

No comments:

Post a Comment